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Abstract 

 
The Intelligent Virtual Station (IVS) has been 

developed by the Smart Systems Research Laboratory at 
the NASA Ames Research Center as a solution to some of 
the training and operations challenges faced by 
organizations like the International Space Station 
training facilities and Mission Control engineering 
teams. At present, astronaut crews are constrained by 
limited access to physical mockups, which themselves 
have a built-in 1-g limitation. Mission operations teams 
are faced with the daunting task of controlling the 
operations and maintenance of an ever-changing Station 
in space. Many operations teams create and follow 
textual procedures without the ability to visualize the 
given actions or alternatives. The IVS allows users to 
easily generate and view procedures to enhance training 
and operations. Because training and mission operations 
are of crucial importance to the International Space 
Station and other similarly sophisticated programs, this 
paper is focused on the IVS integrated procedure tool. 
 
1. Introduction  

 
The International Space Station (ISS) is a very 

complex orbiting research facility that is being designed 
and built by sixteen different nations. Adding to the 
challenge are the problems associated with assembling 
the Station in the hostile environment of space. Given its 
complexity, it is not surprising that NASA and its 
international partners are looking for ways to improve 
the training of astronaut crews that will live aboard the 
ISS and the mission ground controllers that will monitor 
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and control its operation. New technologies are sought 
that can bring verifiable benefits to the task of training, 
such as minimizing the time required to train for a task, 
increasing knowledge retention, and gaining new insight 
into the operation of the station.  

The Intelligent Virtual Station (IVS) is a new 
approach being developed to afford complex systems 
such as the ISS an ever-growing solution to some of the 
difficult challenges facing training and operations. This 
includes making pertinent information easily accessible 
during training and simulation [1], providing spatial 
awareness through the use of non-immersive virtual 
environments (VEs) [2], developing software frameworks 
to support the addition and integration of specialized 
tools to meet a variety of training and operations needs 
[3], and generating and visualizing critical spacecraft 
procedures such as the replacement of on-orbit 
equipment (known as Orbital Replacement Units). This 
paper is focused on this last area—authoring and 
visualizing spacecraft procedures—for the ISS. The work 
done to date, while believed to be more broadly 
applicable, has been focused on the ISS. 

The IVS offers an intuitive single interface for the 
crew to interact and participate in more realistic and 
advanced training scenarios. Both crew and crew training 
teams can generate procedures involving the 
manipulation of objects using a non-immersive virtual 
environment running on a portable computer. This 
capability applies to both scientific-based procedures and 
maintenance/repair procedures. Astronaut crews 
currently train for these types of procedures by reading 
textual descriptions of the task, and then practicing the 
procedure in a physical hardware mockup facility with 
their trainers. With the IVS, crews would be able to view 
a procedure created by a trainer or scientist, then practice 
the procedures using the IVS before moving to the 
physical mockup. Moreover, crewmembers can repeat the 
procedure training on their own laptops at their 
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convenience as many times as desired prior to their 
mission. The procedure generation and viewing tool can 
also be useful for mission operations engineers and 
ground controllers. They can easily create procedures in 
real-time to handle unplanned events or emergencies.      

 
2. IVS Overview 

 
Before presenting the details of procedure generation 

and visualization, a brief overview of some of the features 
of the IVS will be given; a more detailed presentation can 
be found in [2]. There are three main feature sets in the 
IVS: a 3D virtual environment, a data management 
system, and simulation and decision making tools. The 
virtual environment provides a detailed model of the ISS, 
with model geometry repurposed from CAD into a format 
suitable for real-time rendering on portable computers. 
The information management system accesses local and 
remote databases containing ISS document-type data. 
Finally, the simulation and decision making tools are at 
present divided into two areas: one interfaces with 
existing NASA training systems, and the other provides 
procedure generation and visualization. Future work will 
look to expand the number of areas to include fault 
detection and identification, health monitoring, and tools 
designed to improve decision making. 

 
 

 

Figure 1 Screen shot of the IVS application. The 
Zarya module has been selected by the user. 

 
Figure 1 is a screen shot of the IVS running on a 

laptop computer (Dell Latitude C840, Windows XP, 
Pentium 4 at 1.7 GHz, 512 MB of RAM, NVIDIA 
GeForce4 440 Go graphics card). The center pane is the 
non-immersive VE displaying a 3D graphics model of 
the ISS. In this case, the user has navigated to an exterior 
viewing position of the ISS (the ISS is shown in its 

nominal final assembly configuration). The user has 
selected the Russian Zarya module for use in a procedure. 
The bottom right corner of the center pane shows a 
navigation guide map of the station. The map provides 
top and frontal projections of the ISS with the users 
current viewing position superimposed, thereby allowing 
the user to determine his/her current position with 
respect to the station. The left and right panes are 
referred to respectively as the document explorer and the 
component explorer. Both have the look and feel of 
conventional file explorers. Objects in the VE can be 
selected, either by clicking on the object directly in the 
VE or by using the component explorer. That action in 
turn brings up data associated with the object in the 
document explorer. The upper panes contain the user 
interface to the procedure visualization tool, the subject 
of the next section of this paper. 

The IVS is developed in C++ under Microsoft Visual 
Studio .NET; it has approximately eighty core classes 
and thirty-five thousand lines of code. It deploys on 
Windows computers in either a networked or non-
networked setting (in the latter setting, resources such as 
remote databases are obviously not accessible).  The 
software toolkits used include Microsoft Foundation 
Classes [4] and OpenGL [5, 6].  

 
3. Procedure Tool 

 
The procedure visualization tool consists of two 

distinct components: one that allows procedures to be 
generated (an authoring capability), and the other that 
allows procedures once created to be viewed. An 
important design requirement is to make the tool easy to 
use to maximize training effectiveness and efficiency. 

For the procedure generation component, the user 
simply selects the object of interest, initiates the creation 
of a new procedure, and chooses to translate (and 
possibly rotate) the object. Multiple objects can be 
serially selected and manipulated in this fashion during a 
single procedure generation session. During translation, 
the user can set positions defining a point in Euclidian 
world space that the object is required to move through. 
This is important when the object must avoid another 
object or move around a corner. Setting positions that the 
object must traverse through allows the user to create 
desired pathways or build in object avoidance. Users may 
choose either a curve-smoothing polynomial 
interpolation or a piecewise linear spline for each 
trajectory step in the procedure. When the object is to 
translate through multiple locations in the interior space 
of a module, a smoothed trajectory path has a more 
realistic look. In some cases, such as pulling an object out 
of the rack, a straight line trajectory is of course required. 



Rotation trajectories are also smoothed to provide a more 
realistic simulation for the procedure. 

At the class level, a Procedure is composed of a 
vector of Paths. Each Path is a line or curve through 
Euclidian world space that a particular Object must 
follow, where an Object is a geometrical object 
displayed in the VE. A Procedure is set in motion via 
a Go message. This message is propagated to each Path 
in turn. At a given instant in time, the Path determines 
the location and rotation appropriate for its Object 
and then instructs the Object to render itself. Figure 2 
provides a UML object diagram of the various classes 
involved; to reduce clutter, only portions of the public 
interface and attributes relevant to procedures are shown.  

 
 

 
Figure 2 UML object diagram of core classes involved 
in procedure generation and viewing. 

 
Once a procedure has been generated, the Procedure 

object is saved locally to disk (using standard 
serialization methods inherited from the MFC CObject 
class). The procedure file can be shared with other IVS 
users who could then view the newly created procedure.  
Figure 3 shows a user authoring a procedure in which a 
particular object (the Life Science Glovebox) is being 
translated. 
The viewing component of the IVS procedure tool allows 
a user to select and run a locally stored procedure. Unlike 
a standard movie file, IVS users have the ability to 
navigate to any viewpoint during the procedure playback. 

A limitation of the procedure playback is that the 
translation and rotation rates are fixed and cannot be 
modified by the user. It may be important for a user to 
show an object spinning quickly, or translating slowly 
when passing in close proximity to delicate instruments 
that could be damaged if contacted. Future versions of  
IVS will offer the user the ability to select and modify 
these rates. 
 

 

 
 

Figure 3 Screen shot of a user authoring a procedure. 
 
4. Related Work 

 
The need to visualize and assess training and 

operations procedures is critically important for many 
complex systems. Several tools for procedure 
visualization are available. The IVS allows users to easily 
generate and visualize procedures for both planned and 
unplanned tasks. Some of the existing tools provide the 
users with an interactive viewing GUI [7], and allow the 
user to select individual steps as well as the ability to 
view relevant text [8]. DELMIA’s high-end product, 
ENVISION/ERGO [9], has an interactive interface for 
viewing procedures, provides users with an interface for 
generating procedures, and offers motion capture, 
collision detection, and cycle time derivation. A 
DELMIA plug-in product is required to play back 
procedure simulations. Existing tools simulate 
procedures performed in the 1-g environment only.  

Many aerospace companies and automobile 
manufacturers use tools such as those listed above in 
their design, development, and assembly phases. In 
recent years, many of these companies have turned to 
virtual reality to achieve higher levels of realism and 
analysis efficiency. 

Virtual reality (VR) has been widely used in the 
world of construction. It is being used to train 



construction workers on the operation of equipment and 
construction techniques. One VR tool, VECWIT [10], 
combines a 3D virtual construction site with other visual 
media to convey information on safety, load weight, and 
distances. Assembly and disassembly procedures are 
practiced in the VR environment with feedback to the 
user if they failed to accomplish the task. 

The 3D simulation tool COSIMIR® [11] and its 
variants are also used to satisfy many types of training 
needs. COSIMIR® VR is a variant of the COSIMIR® tool 
being used by the German Space Agency for training 
astronauts and as a planning tool for conducting robot-
assisted experiments [12, 13]. The COSIMER® VR tool 
is used to train astronauts for the ISS COLUMBUS 
module in a distributed environment [12]. In this 
application, the user can practice a set of actions prior to 
performing the actual experiment with robotic tools [13]. 

 
5. Conclusions and Future Work 

 
This work has illustrated a straightforward technique 

for generating procedures for complex systems. One 
conclusion, and a novel feature of the IVS, is that the 
ability to author procedures within a VE easily and in 
real-time can be done with a small set of interacting 
classes. As well, using standard class serialization 
techniques dramatically reduced the effort involved in 
storing and sharing procedures (at the expense of human 
readability). Another conclusion drawn from this work is 
the necessity of working early and often with potential 
users. Their involvement has and will continue to be 
useful in identifying critical research challenges. Finally, 
as the survey of related work shows, VR training, while a 
still-maturing field, has a broad range of disciplines to 
which it can be applied. 

There is a need to augment current training due to 
limitations posed by text-based procedures and physical 
mockups. With that in mind, the future development of 
the procedure tool will focus on the following: 

• An enriched feature set, including the ability to: 
reuse procedure steps; allow connections between 
objects; apply deformations to hoses and wires; 
allow conditional branching; dynamically modify 
training scenarios; include textual information in a 
procedure step to accommodate non-physical 
actions; and vary rotation and translation speeds. 

• Offering collaborative VE services, including 
sharing control of the generation of a procedure. 

• Procedure generation with dynamic modeling in the 
0-g environment and high-resolution collision 
detection. 

• Procedure learning features to achieve more 
realism, including using time data from procedure 
segments actually performed in space. 

• Procedure scheduling features to factor in crew time 
constraints or to determine the feasibility of 
performing complex tasks. 

• Automatic conversion of an authored procedure to a 
text document. 

 
Potential applications of the IVS procedure tool will 

include using it to evaluate and optimize task procedures 
before they are approved for use in astronaut crew 
training, using the procedure tool to help visualize and 
assess clearance between moving objects, and evaluating 
human factors issues associated with crew maneuvers 
through the ISS modules. 
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